Technical Memorandum

Date: December 14, 2018

To: Rod Stinson
Division Manager/Air Quality Specialist
1501 Sports Drive, Suite A
Sacramento, CA 95834
Jurisdiction: Alameda County
From: \quad Chris Kinzel, PE, TE
Vice-President, TJKM
Subject: \quad Traffic Impact Analysis for the Proposed Cannabis Cultivation Facility at 7033 Morgan Territory Road, Alameda County

This technical memorandum presents the results of the traffic impact analysis for the proposed Cannabis Cultivation facility located at 7033 Morgan Territory Road in Alameda County. The proposed 92.53 acre property is located within the Agricultural Zoning District, and the Resource Management land use designation of the East County Area Plan. The project includes the development of one cannabis grow house consisting of a 32,000 square feet greenhouse building, including a 22,000 square feet of canopy and one processing building. Local access to the project site is currently provided via Morgan Territory Road.
TJKM evaluated traffic conditions at two study intersections during the a.m. and p.m. peak hours for a typical weekday. The peak periods observed were between 7-9 a.m. and 4-6 p.m. The study intersections and associated traffic controls are as follows:

1. Morgan Territory Road/Manning Road (Two-Way Stop)
2. Proposed Project Driveway/Morgan Territory Road (One-Way Stop)

Figure 1 illustrates the study intersections and the vicinity map of the proposed project. Figure 2 shows the proposed project site plan.

This study addresses the following traffic scenarios:

- Existing Conditions - This scenario evaluates the study intersections based on existing traffic volumes, lane geometry, and traffic controls.
- Existing plus Project Conditions - This scenario is identical to Existing Conditions, but with the addition of traffic from the proposed project.
- Cumulative (2040) Conditions - This scenario is similar to Existing Conditions but with the projected growth rate of 2 percent per year for 22 years, which is applied to Existing Conditions traffic volumes to project traffic demands for the horizon year 2040.
- Cumulative plus Project Conditions - This scenario is identical to Cumulative Conditions, but with the addition of traffic from the proposed project.

Existing Conditions

Important roadways adjacent to the project site are discussed below:
N. Livermore Avenue is a two lane, north-south roadway, which extends from Manning Road to the City of Livermore. The posted speed limit is 50 mph within the project vicinity. N. Livermore Avenue is accessible to the project via Morgan Territory Road.

Manning Road is a two-lane, east-west roadway, extending from Carneal Road and terminating at N . Livermore Avenue. The posted speed limit is 50 mph within the project vicinity.

Morgan Territory Road is a two-lane, north-south roadway, extending from Manning Road and terminating at Marsh Creek Road. The posted speed limit is 50 mph within the project vicinity. Access to the project will be provided via Morgan Territory Road.

Level of Service Analysis Methodology

Level of Service (LOS) is a qualitative measure that describes operational conditions as they relate to the traffic stream and perceptions by motorists and passengers. The LOS generally describes these conditions in terms of such factors as speed and travel time, delays, freedom to maneuver, traffic interruptions, comfort, convenience and safety. The operational LOS are given letter designations from A to F, with A representing the best operating conditions (free-flow) and F the worst (severely congested flow with high delays). Intersections generally are the capacity-controlling locations with respect to traffic operations on arterial and collector streets.

Unsignalized Intersections

The study intersections under stop control (unsignalized) were analyzed using the 2000 HCM Operations Methodology for unsignalized intersections described in Chapter 17 (HCM 2000). LOS ratings for stop-sign controlled intersections are based on the average control delay expressed in seconds per vehicle. At the side street, controlled intersections or two-way stop sign intersections, the control delay is calculated for each movement, not for the intersection as a whole. For approaches composed of a single lane, the control delay is computed as the average of all movements in that lane. Table 1 summarizes the relationship between delay and LOS for unsignalized intersections.

Each of the study intersections was analyzed using Synchro Version 9 software and HCM 2000 methodology. The LOS methodology is described for unsignalized intersections in detail in

Appendix A.

Table 1: Level of Service for Unsignalized Intersections

Level of Service	Description
A	Very low control delay less than 10 seconds per vehicle for each movement subject to delay. subject to delay.
B	Acceptable control delay greater than 15 and up to 25 seconds per vehicle for each movement subject to delay.
C	Tolerable control delay greater than 25 and up to 35 seconds per vehicle for each movement subject to delay.
D	Limit of tolerable control delay greater than 35 and up to 50 seconds per vehicle for each movement subject to delay. Unacceptable control delay in excess of 50 seconds per vehicle for each movement subject to delay.
F	

Source: Highway Capacity Manual 2000

Significant Impact Criteria/Level of Service Standards

According to the 2012 Alameda Countywide Transportation Plan published by the Alameda County Transportation Commission (ACTC), the LOS standard for highway systems is LOS D. For this study, LOS D is considered to be the acceptable threshold for intersections.

Existing Peak Hour Volumes and Average daily Traffic

The existing operations of the study intersections were evaluated for the highest one-hour volumes during weekday morning and evening peak periods. Turning movement counts for vehicles, bicycles, and pedestrians were conducted during typical weekday day a.m. and p.m. peak periods (7:00-9:00 a.m. and 4:00-6:00 p.m., respectively) at the study intersections on September 20, 2018. In addition, seven day average daily traffic (ADT) counts at the following locations were conducted in September, 2018.

1. Morgan Territory Road north of Manning Road
2. Manning Road west of North Livermore Avenue

Appendix B includes all the data sheets for the collected ADT, vehicle, bicycle, and pedestrian counts. Figure 3 illustrates the existing lane geometry, traffic controls, ADT and peak hour traffic volumes at the study intersections.

Intersection Level of Service Analysis - Existing Conditions

The peak hour factor based on the counts, was used at both of the study intersections for the existing analysis. The results of the LOS analysis using the Synchro 9 software program for Existing Conditions are summarized in Table 2. Under this scenario, the study intersections operate within the Alameda County standards (LOS D or better) for both a.m. and p.m. peak hours.

Table 2: Intersection Level of Service Analysis - Existing Conditions

\#	Intersection	Control	Peak Hour	Existing Conditions	
				Average Delay ${ }^{1}$	LOS 2
1	Morgan Territory Road/Manning	Two-Way Stop	AM	10.5	B
	Road		PM	11.7	B
2	Morgan Territory Road/Project	One-Way Stop	AM	9.0	A
	Driveway		PM	9.0	A

Notes: AM - morning peak hour (between 7 and 9 a.m.), PM - evening peak hour (between 4 and 6 p.m.)
${ }^{1}$ Total control delay for the worst movement is presented for side-street stop controlled intersections.
${ }^{2}$ LOS $=$ Level of Service calculations conducted using the Synchro 9.0 level of service analysis software package by applying HCM 2000 Methodology.

The average daily traffic on Morgan Territory Road north of Manning Road is 576 vehicles per day, and on Manning Road west of North Livermore Avenue is 2,229 vehicles per day.

Project Trip Generation and Trip Distribution

Based on the information, the proposed project will operate on a continuous spanning of three shifts, seven days per week. There will be five to six cars per shift including employee's i.e two security guards, master grower, and two trimmers. Table 3 shows the expected trip generation for the proposed project. The project is expected to generate approximately a maximum of 11 weekday a.m. peak hour trips (11 inbound, 0 outbound) and 11 weekday p.m. peak hour trips (0 inbound, 11 outbound) based on the information provided by the project applicant.

Table 3: Proposed Project Trip Generation

\#	Land Use Type	Size		A.M. Peak			P.M. Peak		
				In	Out	Total	In	Out	Total
1	Cannabis Cultivation Center	92.53	Acre	11	0	11	0	11	11
			Trips	11		11		11	11

Notes: Based on the information provided by developer
Trip distribution assumptions for the proposed project were developed based on the existing travel patterns and TJKM's knowledge of the study area.

The distribution assumptions for the proposed development are as follows:

- 70 percent to/from Livermore Avenue
- 30 percent to/from Manning Avenue

Figure 4 illustrates the trip distribution percentages and trip assignment project volumes developed for the proposed project. The assigned project trips were then added to traffic volumes under Existing Conditions to generate Existing plus Project Conditions traffic volumes.

Intersection Level of Service Analysis - Existing Plus Project Conditions

The intersection LOS analysis results for Existing plus Project Conditions are summarized in Table 4. Under this scenario, the study intersections operate within the Alameda County standards for both a.m. and p.m. peak hours. Based on the Alameda County levels of service impact criteria, the project is expected to have a less-than-significant impact at the study intersections under Existing plus Project Conditions. Figure 5 shows projected turning movement volumes at the study intersections for Existing plus Project Conditions.

Table 4: Intersection Level of Service Analysis - Existing plus Project Conditions

\#	Intersection	Control	Existing plus Project Conditions		
			Peak Hour	Average Delay ${ }^{1}$	LOS 2
1	Morgan Territory Road/Manning Road	Two-Way Stop	AM	10.6	B
			PM	11.8	B
2	Morgan Territory Road/Project Driveway	One-Way Stop	AM	9.0	A
			PM	9.2	A

Notes: AM - morning peak hour (between 7 and 9 a.m.), PM - evening peak hour (between 4 and 6 p.m.)
${ }^{1}$ Total control delay for the worst movement is presented for side-street stop controlled intersections.
${ }^{2}$ LOS $=$ Level of Service calculations conducted using the Synchro 9.0 level of service analysis software package by applying HCM 2000
Methodology.
The expected average daily traffic with the addition of the proposed project traffic is 686 vehicles per day on Morgan Territory Road north of Manning Road and 2,339 vehicles per day on Manning Road west of North Livermore Avenue.
Intersection Level of Service Analysis - Cumulative (2040) Conditions
This section details expected traffic conditions at the study intersections under Cumulative (No Project) Conditions. This analysis scenario is defined as baseline conditions without the proposed project in year 2040. This scenario is similar to the Existing Conditions, but with a projected growth rate of two percent per year applied over 22 years to project traffic demands for the year 2040. A peak hour factor of 0.92 was used for study intersections for Cumulative Conditions analysis. The intersection LOS analysis results for Cumulative Conditions are summarized in Table 5. Under this scenario, the study intersections operate within the Alameda County standards for both a.m. and p.m. peak hours. Figure $\mathbf{6}$ shows projected turning movement volumes at the study intersections for Cumulative Conditions.

Table 5: Intersection Level of Service Analysis - Cumulative (2040) Conditions

\#	Intersection	Control	Peak Hour	Cumulative Conditions	
				Average Delay ${ }^{1}$	LOS $^{\mathbf{2}}$
1	Morgan Territory Road/Manning Road	Two-Way Stop	AM PM	11.6 13.7	B
2	Morgan Territory Road/Project Driveway	One-Way Stop	AM PM	9.0 9.1	A A

Notes: AM - morning peak hour (between 7 and 9 a.m.), PM - evening peak hour (between 4 and 6 p.m.)
${ }^{1}$ Total control delay for the worst movement is presented for side-street stop controlled intersections.
${ }^{2}$ LOS $=$ Level of Service calculations conducted using the Synchro 9.0 level of service analysis software package by applying HCM 2000 Methodology.
Under Cumulative Conditions the expected average daily traffic is 890 vehicles per day on Morgan Territory Road north of Manning Road and 3,446 vehicles per day on Manning Road west of North Livermore Avenue.

Intersection Level of Service Analysis - Cumulative Plus Project Conditions
The intersection LOS analysis results for Cumulative plus Project Conditions are summarized in Table 6. Under this scenario, the study intersections operate within the Alameda County standards for both a.m. and p.m. peak hours. Based on the Alameda County levels of service impact criteria, the project is expected to have a less-than-significant impact at the study intersections under Cumulative plus Project Conditions. Figure 7 shows projected turning movement volumes at the study intersections for Cumulative plus Project Conditions.

Table 6: Intersection Level of Service Analysis - Cumulative plus Project Conditions

\#				Cumulative plus Project Conditions	
	Intersection	Control	Peak Hour	Average Delay	LOS $^{\mathbf{1}}$

Notes: AM - morning peak hour (between 7 and 9 a.m.), PM - evening peak hour (between 4 and 6 p.m.)
${ }^{1}$ Total control delay for the worst movement is presented for side-street stop controlled intersections.
${ }^{2}$ LOS $=$ Level of Service calculations conducted using the Synchro 9.0 level of service analysis software package by applying HCM 2000 Methodology.
The expected average daily traffic with the addition of the proposed project traffic is 1000 vehicles per day on Morgan Territory Road north of Manning Road and 3,556 vehicles per day on Manning Road west of North Livermore Avenue.

Level of service worksheets for all the scenarios are attached in the Appendix C.

Site Access and On-Site Circulation

This section analyzes site access and internal circulation for passenger vehicles, trucks, pedestrians, and bicycles based on the site plan. The proposed project's access will be via one full access driveway on Morgan Territory Road as shown in the project site plan. The internal circulation for the proposed project was reviewed for issues related to safety and parking. The internal loop roadway is 22 feet wide and accommodates two-way travel. Based on the evaluation, the access roadway is expected to be adequate for passenger vehicles accessing the project site. Emergency vehicles can access the project via Morgan Territory Road. Overall, the proposed on-site vehicle circulation is adequate and should not result in any traffic operations issues on-site that would provide significant impacts on County streets.
The proposed project is not expected to generate pedestrian and bicycle trips. Based on the pedestrian and bicycle counts conducted there is no pedestrian and bicycle activity along Morgan Territory Road.

Sight Distance Analysis

Sight distance is evaluated to determine if a driver will have adequate visibility to enter a roadway safely without resulting in a conflict with traffic already on the roadway. The project access points should be free and clear of any obstructions that would materially and adversely affect sight distance, thereby ensuring that exiting vehicles can see pedestrians on the sidewalk and other vehicles traveling on adjacent roadways. The line of sight between vehicles exiting the driveway and vehicles travelling northbound is clear and visible. The line of sight of vehicles exiting the driveway and vehicles travelling southbound is affected by existing vegetation and the existing horizontal curve, just north of the driveway. In order to improve the sight distance for southbound traffic on Morgan Territory Road the existing trees should be kept trimmed to a minimum of eight feet from the ground. Ground cover and other landscaping should be kept trimmed to a maximum height of three feet. By clearing the vegetation, sight distance of approximately 300 feet (required for the design speed of 40 mph as per the Highway Design Manual (HDM)) is gained for southbound vehicles. TJKM recommends installation of a stop sign and appropriate pavement markings at the project driveway and also install W1-10C blind driveway signs for southbound travelling vehicles.

Parking

As per the Alameda County Municipal Code, cannabis grow house building requires four spaces per 1000 square feet. The project proposes 26 standard parking spaces of which one space is accessible parking space. Based on the parking criteria, the proposed number of off-street parking spaces should satisfy the parking needs for the project.

Conclusions

- The proposed project is expected to generate approximately 11 weekday a.m. peak hour trips and 11 weekday p.m. peak hour trips.
- Based on the Alameda County levels of service impact criteria, the project is expected to have a less-than-significant impact at the study intersections under Existing, and Cumulative plus Project Conditions.
- Based on the evaluation, the proposed on-site vehicle circulation is adequate and should not result in significant impacts on County streets.
- The proposed number of off-street parking spaces will satisfy the parking needs for the project
- The line of sight between vehicles exiting the driveway and vehicles travelling northbound is clear and visible. The line of sight of vehicles exiting the driveway and vehicles travelling southbound is affected by existing vegetation and the existing horizontal curve, just north of the driveway. In order to improve the sight distance for southbound traffic on Morgan Territory Road the existing trees should be kept trimmed to a minimum of eight feet from the ground. Ground cover and other landscaping should be kept trimmed to a maximum height of three feet. By clearing the vegetation, sight distance of approximately 300 feet (required for the design speed of 40 mph as per the Highway Design Manual (HDM) is gained for southbound vehicles. TJKM recommends installation of a stop sign and appropriate pavement markings at the project driveway and also install W1-10C blind driveway signs for southbound travelling vehicles.

Vicinity Map

Project Site Plan

Existing Lane Geometry, Traffic Controls and Peak Hour Traffic Volumes

Trip Distribution and Assignment

Existing Plus Project Peak Hour Traffic Volumes

Cumulative Peak Hour Traffic Volumes

Cumulative Plus Project Peak Hour Traffic Volumes

LEVEL OF SERVICE METHODOLOGY

LEVEL OF SERVICE

The description and procedures for calculating capacity and level of service are found in Transportation Research Board, Highway Capacity Manual 2000. Highway Capacity Manual 2000 represents the latest research on capacity and quality of service for transportation facilities.

Quality of service requires quantitative measures to characterize operational conditions within a traffic stream. Level of service is a quality measure describing operational conditions within a traffic stream, generally in terms of such service measures as speed and travel time, freedom to maneuver, traffic interruptions, and comfort and convenience.

Six levels of service are defined for each type of facility that has analysis procedures available. Letters designate each level, from A to F , with level-of-service A representing the best operating conditions and level-of-service F the worst. Each level of service represents a range of operating conditions and the driver's perception of these conditions. Safety is not included in the measures that establish service levels.

A general description of service levels for various types of facilities is shown in Table A-I.
Table A-I
Level of Service Description

Facility Type	Uninterrupted Flow	Interrupted Flow
	Freeways Multi-lane Highways Two-lane Highways Urban Streets	Signalized Intersections Unsignalized Intersections Two-way Stop Control All-way Stop Control
LOS	Free-flow	Stable flow. Presence of other users noticeable. Stable flow. Comfort and convenience starts to decline. High density stable flow. B
D	Unstable flow.	Low delay.
E	Forced or breakdown flow.	Tolerable delay.
F	Limit of acceptable delay.	

Source: Highway Capacity Manual 2000

Urban Streets

The term "urban streets" refers to urban arterials and collectors, including those in downtown areas.

Arterial streets are roads that primarily serve longer through trips. However, providing access to abutting commercial and residential land uses is also an important function of arterials.

Collector streets provide both land access and traffic circulation within residential, commercial and industrial areas. Their access function is more important than that of arterials, and unlike arterials their operation is not always dominated by traffic signals.

Downtown streets are signalized facilities that often resemble arterials. They not only move through traffic but also provide access to local businesses for passenger cars, transit buses, and trucks. Pedestrian conflicts and lane obstructions created by stopping or standing buses, trucks and parking vehicles that cause turbulence in the traffic flow are typical of downtown streets.

The speed of vehicles on urban streets is influenced by three main factors, street environment, interaction among vehicles and traffic control. As a result, these factors also affect quality of service.

The street environment includes the geometric characteristics of the facility, the character of roadside activity and adjacent land uses. Thus, the environment reflects the number and width of lanes, type of median, driveway density, spacing between signalized intersections, existence of parking, level of pedestrian activity and speed limit.

The interaction among vehicles is determined by traffic density, the proportion of trucks and buses, and turning movements. This interaction affects the operation of vehicles at intersections and, to a lesser extent, between signals.

Traffic control (including signals and signs) forces a portion of all vehicles to slow or stop. The delays and speed changes caused by traffic control devices reduce vehicle speeds, however, such controls are needed to establish right-of-way.

The average travel speed for through vehicles along an urban street is the determinant of the operating level of service. The travel speed along a segment, section or entire length of an urban street is dependent on the running speed between signalized intersections and the amount of control delay incurred at signalized intersections.

Level-of-service A describes primarily free-flow operations. Vehicles are completely unimpeded in their ability to maneuver within the traffic stream. Control delay at signalized intersections is minimal.

Level-of-service B describes reasonably unimpeded operations. The ability to maneuver within the traffic stream is only slightly restricted, and control delays at signalized intersections are not significant.

Level-of-service C describes stable operations, however, ability to maneuver and change lanes in midblock location may be more restricted than at level-of-service B. Longer queues, adverse signal coordination, or both may contribute to lower travel speeds.

Level-of-service D borders on a range in which in which small increases in flow may cause substantial increases in delay and decreases in travel speed. Level-of-service D may be due to adverse signal progression, inappropriate signal timing, high volumes, or a combination of these factors.

Level-of-service E is characterized by significant delays and lower travel speeds. Such operations are caused by a combination of adverse progression, high signal density, high volumes, extensive delays at critical intersections, and inappropriate signal timing.

Level-of-service F is characterized by urban street flow at extremely low speeds. Intersection congestion is likely at critical signalized locations, with high delays, high volumes, and extensive queuing.

The methodology to determine level of service stratifies urban streets into four classifications. The classifications are complex, and are related to functional and design categories. Table A-II describes the functional and design categories, while Table A-III relates these to the urban street classification.

Once classified, the urban street is divided into segments for analysis. An urban street segment is a oneway section of street encompassing a series of blocks or links terminating at a signalized intersection. Adjacent segments of urban streets may be combined to form larger street sections, provided that the segments have similar demand flows and characteristics.

Levels of service are related to the average travel speed of vehicles along the urban street segment or section.

Travel times for existing conditions are obtained by field measurements. The maximum-car technique is used. The vehicle is driven at the posted speed limit unless impeded by actual traffic conditions. In the maximum-car technique, a safe level of vehicular operation is maintained by observing proper following distances and by changing speeds at reasonable rates of acceleration and deceleration. The maximum-car technique provides the best base for measuring traffic performance.

An observer records the travel time and locations and duration of delay. The beginning and ending points are the centers of intersections. Delays include times waiting in queues at signalized intersections. The travel speed is determined by dividing the length of the segment by the travel time. Once the travel speed on the arterial is determined, the level of service is found by comparing the speed to the criteria in Table A-IV. Level-of-service criteria vary for the different classifications of urban street, reflecting differences in driver expectations.

Table A-II
Functional and Design Categories for Urban Streets

Criterion	Functional Category			
	Principal Arterial		Minor Arterial	
Mobility function	Very important		Important	
Access function	Very minor		Substantial	
Points connected	Freeways, important activity centers, major traffic generators		Principal arterials	
Predominant trips served	Relatively long trips between major points and through trips entering, leaving, and passing through city		Trips of moderate length within relatively small geographical areas	
Criterion	Design Category			
	High-Speed	Suburban	Intermediate	Urban
Driveway access density	Very low density	Low density	Moderate density	High density
Arterial type	Multilane divided; undivided or two-lane with shoulders	Multilane divided: undivided or two-lane with shoulders	Multilane divided or undivided; one way, two lane	Undivided one way; two way, two or more lanes
Parking	No	No	Some	Usually
Separate left-turn lanes	Yes	Yes	Usually	Some
Signals per mile	0.5 to 2	1 to 5	4 to 10	6 to 12
Speed limits	45 to 55 mph	40 to 45 mph	30 to 40 mph	25 to 35 mph
Pedestrian activity	Very little	Little	Some	Usually
Roadside development	Low density	Low to medium density	Medium to moderate density	High density

Source: Highway Capacity Manual 2000
Table A-III
Urban Street Class based on Function and Design Categories

Design Category	Functional Category	
	Principal Arterial	Minor Arterial
High-Speed	I	Not applicable
Suburban	II	II
Intermediate	II	III or IV
Urban	III or IV	IV

Source: Highway Capacity Manual 2000

Table A-IV
Urban Street Levels of Service by Class

Urban Street Class	I	II	III	IV
Range of Free Flow Speeds (mph) Typical Free Flow Speed (mph)	45 to 55	35 to 45	30 to 35	25 to 35
Level of Service	50	40	33	30
A		Average Travel Speed (mph)		
B	>42	>35	>30	>25
C	>34	>28	>24	>19
D	>27	>22	>18	>13
E	>21	>17	>14	>9
F	>16	>13	>10	>7

Source: Highway Capacity Manual 2000

Interrupted Flow

One of the more important elements limiting, and often interrupting the flow of traffic on a highway is the intersection. Flow on an interrupted facility is usually dominated by points of fixed operation such as traffic signals, stop and yield signs. These all operate quite differently and have differing impacts on overall flow.

Signalized Intersections

The capacity of a highway is related primarily to the geometric characteristics of the facility, as well as to the composition of the traffic stream on the facility. Geometrics are a fixed, or non-varying, characteristic of a facility.

At the signalized intersection, an additional element is introduced into the concept of capacity: time allocation. A traffic signal essentially allocates time among conflicting traffic movements seeking use of the same physical space. The way in which time is allocated has a significant impact on the operation of the intersection and on the capacity of the intersection and its approaches.

Level of service for signalized intersections is defined in terms of control delay, which is a measure of driver discomfort, frustration, fuel consumption, and increased travel time. The delay experienced by a motorist is made up of a number of factors that relate to control, traffic and incidents. Total delay is the difference between the travel time actually experienced and the reference travel time that would result during base conditions, i.e., in the absence of traffic control, geometric delay, any incidents, and any other vehicles. Specifically, level of service criteria for traffic signals are stated in terms of average control delay per vehicle, typically for a 15 -minute analysis period. Delay is a complex measure and depends on a number of variables, including the quality of progression, the cycle length, the ratio of green time to cycle length and the volume to capacity ratio for the lane group.

For each intersection analyzed the average control delay per vehicle per approach is determined for the peak hour. A weighted average of control delay per vehicle is then determined for the intersection. A level of service designation is given to the control delay to better describe the level of operation. A
description of levels of service for signalized intersections can be found in Table A-V.

Table A-V
Description of Level of Service for Signalized Intersections

Level of Service	Description
A	Very low control delay, up to 10 seconds per vehicle. Progression is extremely favorable, and most vehicles arrive during the green phase. Many vehicles do not stop at all. Short cycle lengths may tend to contribute to low delay values.
B	Control delay greater than 10 and up to 20 seconds per vehicle. There is good progression or short cycle lengths or both. More vehicles stop causing higher levels of delay.
C	Control delay greater than 20 and up to 35 seconds per vehicle. Higher delays are caused by fair progression or longer cycle lengths or both. Individual cycle failures may begin to appear. Cycle failure occurs when a given green phase doe not serve queued vehicles, and overflow occurs. The number of vehicles stopping is significant, though many still pass through the intersection without stopping.
D	Control delay greater than 35 and up to 55 seconds per vehicle. The influence of congestions becomes more noticeable. Longer delays may result from some combination of unfavorable progression, long cycle lengths, or high volumes. Many vehicles stop, the proportion of vehicles not stopping declines. Individual cycle failures are noticeable.
E	Control delay greater than 55 and up to 80 seconds per vehicle. The limit of acceptable delay. High delays usually indicate poor progression, long cycle lengths, and high volumes. Individual cycle failures are frequent.
F	Control delay in excess of 80 seconds per vehicle. Unacceptable to most drivers. Oversaturation, arrival flow rates exceed the capacity of the intersection. Many individual cycle failures. Poor progression and long cycle lengths may also be contributing factors to higher delay.

Source: Highway Capacity Manual 2000

The use of control delay, which may also be referred to as signal delay, was introduced in the 1997 update to the Highway Capacity Manual, and represents a departure from previous updates. In the third edition, published in 1985 and the 1994 update to the third edition, delay only included stopped delay. Thus, the level of service criteria listed in Table A-V differs from earlier criteria.

Unsignalized Intersections

The current procedures on unsignalized intersections were first introduced in the 1997 update to the Highway Capacity Manual and represent a revision of the methodology published in the 1994 update to the 1985 Highway Capacity Manual. The revised procedures use control delay as a measure of effectiveness to determine level of service. Delay is a measure of driver discomfort, frustration, fuel consumption, and increased travel time. The delay experienced by a motorist is made up of a number of factors that relate to control, traffic and incidents. Total delay is the difference between the travel time actually experienced and the reference travel time that would result during base conditions, i.e., in the absence of traffic control, geometric delay, any incidents, and any other vehicles. Control delay is the increased time of travel for a vehicle approaching and passing through an unsignalized intersection, compared with a free-flow vehicle if it were not required to slow or stop at the intersection.

Two-Way Stop Controlled Intersections

Two-way stop controlled intersections in which stop signs are used to assign the right-of-way, are the most prevalent type of intersection in the United States. At two-way stop-controlled intersections the stop-controlled approaches are referred as the minor street approaches and can be either public streets or private driveways. The approaches that are not controlled by stop signs are referred to as the major street approaches.

The capacity of movements subject to delay are determined using the "critical gap" method of capacity analysis. Expected average control delay based on movement volume and movement capacity is calculated. A level of service designation is given to the expected control delay for each minor movement. Level of service is not defined for the intersection as a whole. Control delay is the increased time of travel for a vehicle approaching and passing through a stop-controlled intersection, compared with a free-flow vehicle if it were not required to slow or stop at the intersection. A description of levels of service for two-way stop-controlled intersections is found in Table A-VI.

Table A-VI

Description of Level of Service for Two-Way Stop Controlled Intersections

Level of Service	Description
A	Very low control delay less than 10 seconds per vehicle for each movement subject to delay.
B	Low control delay greater than 10 and up to 15 seconds per vehicle for each movement subject to delay.
C	Acceptable control delay greater than 15 and up to 25 seconds per vehicle for each movement subject to delay.
D	Tolerable control delay greater than 25 and up to 35 seconds per vehicle for each movement subject to delay.
E	Limit of tolerable control delay greater than 35 and up to 50 seconds per vehicle for each movement subject to delay.
F	Unacceptable control delay in excess of 50 seconds per vehicle for each movement subject to delay.

Source: Highway Capacity Manual 2000

Appendix B - Traffic Counts Worksheets

Prepared by NDS/ATD
 VOLUME
 Morgan Territory Rd N/O Manning Rd

Day: Tuesday
Date: 9/18/2018
City: Livermore
Project \#: CA18_8461_001

Prepared by NDS/ATD
 VOLUME
 Morgan Territory Rd N/O Manning Rd

Day: Wednesday
Date: 9/19/2018

City: Livermore
Project \#: CA18_8461_001

Prepared by NDS/ATD
 VOLUME
 Morgan Territory Rd N/O Manning Rd

Day: Thursday
Date: 9/20/2018

City: Livermore
Project \#: CA18_8461_001

Prepared by NDS/ATD
 VOLUME
 Morgan Territory Rd N/O Manning Rd

Day: Friday
Date: 9/21/2018

City: Livermore
Project \#: CA18_8461_001

Prepared by NDS/ATD
 VOLUME
 Morgan Territory Rd N/O Manning Rd

Day: Saturday
Date: 9/22/2018
City: Livermore
Project \#: CA18_8461_001

Prepared by NDS/ATD
 VOLUME
 Morgan Territory Rd N/O Manning Rd

Day: Sunday
Date: 9/23/2018

City: Livermore
Project \#: CA18_8461_001

Prepared by NDS/ATD
 VOLUME
 Morgan Territory Rd N/O Manning Rd

Day: Monday
Date: 9/24/2018
City: Livermore
Project \#: CA18_8461_001

Prepared by NDS/ATD
 VOLUME
 Manning Rd W/O Livermore Ave

Day: Tuesday
Date: 9/18/2018

City: Livermore
Project \#: CA18_8461_002

Prepared by NDS/ATD
 VOLUME
 Manning Rd W/O Livermore Ave

Day: Wednesday
Date: 9/19/2018

City: Livermore
Project \#: CA18_8461_002

Prepared by NDS/ATD
 VOLUME
 Manning Rd W/O Livermore Ave

Day: Thursday
Date: 9/20/2018

City: Livermore
Project \#: CA18_8461_002

Prepared by NDS/ATD
 VOLUME
 Manning Rd W/O Livermore Ave

Day: Friday
Date: 9/21/2018

City: Livermore
Project \#: CA18_8461_002

Prepared by NDS/ATD
 VOLUME
 Manning Rd W/O Livermore Ave

Day: Saturday
Date: 9/22/2018

City: Livermore
Project \#: CA18_8461_002

Prepared by NDS/ATD
 VOLUME
 Manning Rd W/O Livermore Ave

Day: Sunday
Date: 9/23/2018

City: Livermore
Project \#: CA18_8461_002

Prepared by NDS/ATD
 VOLUME
 Manning Rd W/O Livermore Ave

Day: Monday
Date: 9/24/2018

City: Livermore
Project \#: CA18_8461_002

ALL TRAFFIC DATA

(916) 771-8700

$\begin{array}{rr}\text { orders@atdtraffic.com } & \text { File Name : 18-08462-001 } \\ \text { Date :09/20/2018 }\end{array}$

	Morgan Territory Rd Southbound					Manning Rd Westbound					Morgan Territory Rd Northbound					Manning Rd Eastbound						
START TIME	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	Total	Uturns Total
7:00	7	0	1	0	8	0	28	0	0	28	0	0	0	0	0	1	3	0	0	4	40	0
7:15	8	0	6	0	14	0	41	3	0	44	0	0	0	0	0	0	6	0	0	6	64	0
7:30	9	0	0	0	9	0	49	0	0	49	0	0	0	0	0	0	10	0	0	10	68	0
7:45	3	0	3	0	6	0	49	2	0	51	0	0	0	0	0	0	8	0	0	8	65	0
Total	27	0	10	0	37	0	167	5	0	172	0	0	0	0	0	1	27	0	0	28	237	0
8:00	9	0	1	0	10	0	33	3	0	36	0	0	1	0	1	0	9	0	0	9	56	0
8:15	9	0	6	0	15	0	49	8	0	57	0	0	0	0	0	0	7	0	0	7	79	0
8:30	10	0	5	0	15	0	35	2	0	37	0	0	0	0	0	0	8	0	0	8	60	0
8:45	6	0	2	0	8	0	44	4	0	48	0	0	0	0	0	0	8	0	0	8	64	0
Total	34	0	14	0	48	0	161	17	0	178	0	0	1	0	1	0	32	0	0	32	259	0

16:00	8	0	0	0	8	0	8	5	0	13	0	0	0	0	0	3	43	0	0	46	67	0
16:15	3	0	0	0	3	0	6	9	0	15	0	0	0	0	0	2	69	0	0	71	89	0
16:30	4	0	0	0	4	0	14	3	0	17	0	0	0	0	0	3	63	0	0	66	87	0
16:45	3	0	1	0	4	0	17	9	0	26	0	0	0	0	0	4	52	0	0	56	86	0
Total	18	0	1	0	19	0	45	26	0	71	0	0	0	0	0	12	227	0	0	239	329	0
17:00	7	0	1	1	9	0	12	10	0	22	0	0	0	0	0	2	58	0	0	60	91	1
17:15	0	0	0	0	0	0	17	11	0	28	0	0	0	1	1	3	64	0	0	67	96	1
17:30	6	0	0	0	6	0	6	5	0	11	0	0	0	0	0	4	74	0	0	78	95	0
17:45	1	0	0	0	1	0	9	3	0	12	0	0	0	0	0	3	54	0	0	57	70	0
Total	14	0	1	1	16	0	44	29	0	73	0	0	0	1	1	12	250	0	0	262	352	2
Grand Total	93	0	26	1	120	0	417	77	0	494	0	0	1	1	2	25	536	0	0	561	1177	2
Apprch \%	77.5\%	0.0\%	21.7\%	0.8\%		0.0\%	84.4\%	15.6\%	0.0\%		0.0\%	0.0\%	50.0\%	50.0\%		4.5\%	95.5\%	0.0\%	0.0\%			
Total \%	7.9\%	0.0\%	2.2\%	0.1\%	10.2\%	0.0\%	35.4\%	6.5\%	0.0\%	42.0\%	0.0\%	0.0\%	0.1\%	0.1\%	0.2\%	2.1\%	45.5\%	0.0\%	0.0\%	47.7\%	100.0\%	

$\begin{array}{\|c\|} \hline \text { AM PEAK } \\ \text { HOUR } \\ \hline \end{array}$	Morgan Territory Rd Southbound					Manning Rd Westbound					Morgan Territory Rd Northbound					Manning Rd Eastbound					
START TIME	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	Total
Peak Hour Analysis From 07:30 to 08:30																					
Peak Hour For Entire Intersection Begins at 07:30																					
7:30	9	0	0	0	9	0	49	0	0	49	0	0	0	0	0	0	10	0	0	10	68
7:45	3	0	3	0	6	0	49	2	0	51	0	0	0	0	0	0	8	0	0	8	65
8:00	9	0	1	0	10	0	33	3	0	36	0	0	1	0	1	0	9	0	0	9	56
8:15	9	0	6	0	15	0	49	8	0	57	0	0	0	0	0	0	7	0	0	7	79
Total Volume	30	0	10	0	40	0	180	13	0	193	0	0	1	0	1	0	34	0	0	34	268
\% App Total	75.0\%	0.0\%	25.0\%	0.0\%		0.0\%	93.3\%	6.7\%	0.0\%		0.0\%	0.0\%	100.0\%	0.0\%		0.0\%	100.0\%	0.0\%	0.0\%		
PHF	. 833	. 000	. 417	. 000	. 667	. 000	. 918	. 406	. 000	. 846	. 000	. 000	. 250	. 000	. 250	. 000	. 850	. 000	. 000	. 850	. 848
$\begin{array}{\|c\|} \hline \text { PM PEAK } \\ \text { HOUR } \\ \hline \end{array}$	Morgan Territory Rd Southbound					Manning Rd Westbound					Morgan Territory Rd Northbound					Manning Rd Eastbound					
START TIME	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	Total
Peak Hour Analysis From 16:45 to 17:45																					
Peak Hour For Entire Intersection Begins at 16:45																					
16:45	3	0	1	0	4	0	17	9	0	26	0	0	0	0	0	4	52	0	0	56	86
17:00	7	0	1	1	9	0	12	10	0	22	0	0	0	0	0	2	58	0	0	60	91
17:15	0	0	0	0	0	0	17	11	0	28	0	0	0	1	1	3	64	0	0	67	96
17:30	6	0	0	0	6	0	6	5	0	11	0	0	0	0	0	4	74	0	0	78	95
Total Volume	16	0	2	1	19	0	52	35	0	87	0	0	0	1	1	13	248	0	0	261	368
\% App Total	84.2\%	0.0\%	10.5\%	5.3\%		0.0\%	59.8\%	40.2\%	0.0\%		0.0\%	0.0\%	0.0\%	100.0\%		5.0\%	95.0\%	0.0\%	0.0\%		
PHF\|	. 571	. 000	. 500	. 250	. 528	. 000	. 765	. 795	. 000	. 777	. 000	. 000	. 000	. 250	. 250	. 813	. 838	. 000	. 000	. 837	. 958

ALL TRAFFIC DATA

orders@atdtraffic.com

	Morgan Territory Rd Southbound					Manning Rd Westbound					Morgan Territory Rd Northbound					Manning Rd Eastbound						
START TIME	LEFT	THRU	RIGHT	PEDS	APP.TOTAL	LEFT	THRU	RIGHT	PEDS	APP.TOTAL	LEFT	THRU	RIGHT	PEDS	APP.TOTAL	LEFT	THRU	RIGHT	PEDS	APP.TOTAL	Total	Peds Total
7:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

16:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0
Grand Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Apprch \%	0.0\%	0.0\%	0.0\%			0.0\%	0.0\%	0.0\%			0.0\%	0.0\%	0.0\%			0.0\%	0.0\%	0.0\%				
Total \%	0.0\%	0.0\%	0.0\%		0.0\%	0.0\%	0.0\%	0.0\%		0.0\%	0.0\%	0.0\%	0.0\%		0.0\%	0.0\%	0.0\%	0.0\%		0.0\%	0.0\%	

$\begin{gathered} \hline \text { AM PEAK } \\ \text { HOUR } \\ \hline \end{gathered}$	Morgan Territory Rd Southbound					Manning Rd Westbound					Morgan Territory Rd Northbound					Manning Rd Eastbound					
START TIME	LEFT	THRU	RIGHT	PEDS	APP.TOTAL	LEFT	THRU	RIGHT	PEDS	APP.TOTAL	LEFT	THRU	RIGHT	PEDS	APP.total	LEFT	THRU	RIGHT	PEDS	A APP.TOTAL	Total
Peak Hour Analysis From 07:30 to 08:30																					
Peak Hour For Entire Intersection Begins at 07:30																					
7:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Volume	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
\% App Total	0.0\%	0.0\%	0.0\%			0.0\%	0.0\%	0.0\%			0.0\%	0.0\%	0.0\%			0.0\%	0.0\%	0.0\%			
PHF\|	000	. 000	. 000		. 000	. 000	. 000	. 000		. 000	. 000	. 000	. 000		. 000	. 000	. 000	. 000		. 000	. 000
$\begin{array}{\|c\|} \hline \text { PM PEAK } \\ \text { HOUR } \\ \hline \end{array}$	Morgan Territory Rd Southbound					Manning Rd Westbound					Morgan Territory Rd Northbound					Manning Rd Eastbound					
START TIME	LEFT	THRU	RIGHT	PEDS	APP.TOTAL	LEFT	THRU	RIGHT	PEDS	APP.TOTAL	LEFT	THRU	RIGHT	PEDS	APP.TOTAL	LEFT	THRU	RIGHT	PEDS	APP.TOTAL	Total
Peak Hour Analysis From 16:45 to 17:45																					
Peak Hour For Entire Intersection Begins at 16:45																					
16:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Volume	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
\% App Total	0.0\%	0.0\%	0.0\%			0.0\%	0.0\%	0.0\%			0.0\%	0.0\%	0.0\%			0.0\%	0.0\%	0.0\%			
PHF\|	. 000	. 000	. 000		. 000	. 000	. 000	. 000		. 000	. 000	. 000	. 000		. 000	. 000	. 000	. 000		. 000	. 000

ALL TRAFFIC DATA

(916) 771-8700

orders@atdtraffic.com File Name : 18-08462-002
Date : 09/20/2018

	Morgan Territory Rd Southbound					Project Dwy Westbound					Morgan Territory Rd Northbound					Project Dwy Eastbound						
START TIME	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	Total	Uturns Total
7:00	0	7	0	0	7	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	8	0
7:15	0	13	0	0	13	1	0	0	0	1	0	3	0	0	3	0	0	0	0	0	17	0
7:30	0	10	0	0	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	10	0
7:45	0	4	0	0	4	0	0	0	0	0	0	2	0	0	2	0	0	0	0	0	6	0
Total	0	34	0	0	34	1	0	0	0	1	0	6	0	0	6	0	0	0	0	0	41	0
8:00	0	10	0	0	10	1	0	0	0	1	0	3	0	0	3	0	0	0	0	0	14	0
8:15	0	12	0	0	12	1	0	0	0	1	0	5	2	0	7	0	0	0	0	0	20	0
8:30	0	15	0	0	15	0	0	0	0	0	0	2	0	0	2	0	0	0	0	0	17	0
8:45	0	8	0	0	8	0	0	0	0	0	0	3	0	0	3	0	0	0	0	0	11	0
Total	0	45	0	0	45	2	0	0	0	2	0	13	2	0	15	0	0	0	0	0	62	0

16:00	0	3	0	0	3	0	0	0	0	0	0	7	0	0	7	0	0	0	0	0	10	0
16:15	0	1	0	0	1	0	0	0	0	0	0	12	0	0	12	0	0	0	0	0	13	0
16:30	0	4	0	0	4	0	0	0	0	0	0	6	0	0	6	0	0	0	0	0	10	0
16:45	0	4	0	0	4	0	0	0	0	0	0	12	0	0	12	0	0	0	0	0	16	0
Total	0	12	0	0	12	0	0	0	0	0	0	37	0	0	37	0	0	0	0	0	49	0
17:00	1	7	0	0	8	1	0	0	0	1	0	9	1	0	10	0	0	0	0	0	19	0
17:15	0	1	0	0	1	0	0	0	0	0	0	16	0	0	16	0	0	0	0	0	17	0
17:30	0	6	0	0	6	0	0	0	0	0	0	8	0	0	8	0	0	0	0	0	14	0
17:45	0	1	0	0	1	0	0	0	0	0	0	7	0	0	7	0	0	0	0	0	8	0
Total	1	15	0	0	16	1	0	0	0	1	0	40	1	0	41	0	0	0	0	0	58	0
Grand Total	1	106	0	0	107	4	0	0	0	4	0	96	3	0	99	0	0	0	0	0	210	0
Apprch \%	0.9\%	99.1\%	0.0\%	0.0\%		100.0\%	0.0\%	0.0\%	0.0\%		0.0\%	97.0\%	3.0\%	0.0\%		0.0\%	0.0\%	0.0\%	0.0\%			
Total \%	0.5\%	50.5\%	0.0\%	0.0\%	51.0\%	1.9\%	0.0\%	0.0\%	0.0\%	1.9\%	0.0\%	45.7\%	1.4\%	0.0\%	47.1\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	100.0\%	

$\begin{array}{\|c\|} \hline \text { AM PEAK } \\ \text { HOUR } \\ \hline \end{array}$	Morgan Territory Rd Southbound					Project Dwy Westbound					Morgan Territory Rd Northbound					Project Dwy Eastbound					
START TIME	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	Total
Peak Hour Analysis From 08:00 to 09:00																					
Peak Hour For Entire Intersection Begins at 08:00																					
8:00	0	10	0	0	10	1	0	0	0	1	0	3	0	0	3	0	0	0	0	0	14
8:15	0	12	0	0	12	1	0	0	0	1	0	5	2	0	7	0	0	0	0	0	20
8:30	0	15	0	0	15	0	0	0	0	0	0	2	0	0	2	0	0	0	0	0	17
8:45	0	8	0	0	8	0	0	0	0	0	0	3	0	0	3	0	0	0	0	0	11
Total Volume	0	45	0	0	45	2	0	0	0	2	0	13	2	0	15	0	0	0	0	0	62
\% App Total	0.0\%	100.0\%	0.0\%	0.0\%		100.0\%	0.0\%	0.0\%	0.0\%		0.0\%	86.7\%	13.3\%	0.0\%		0.0\%	0.0\%	0.0\%	0.0\%		
PHF\|	. 000	. 750	. 000	. 000	. 750	. 500	. 000	. 000	. 000	. 500	. 000	. 650	250	. 000	. 536	. 000	. 000	. 000	. 000	. 000	. 775
$\begin{array}{\|c\|} \hline \text { PM PEAK } \\ \text { HOUR } \\ \hline \end{array}$	Morgan Territory Rd Southbound					Project Dwy Westbound					Morgan Territory Rd Northbound					Project Dwy Eastbound					
START TIME	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	LEFT	THRU	RIGHT	UTURNS	APP.TOTAL	Total
Peak Hour Analysis From 16:45 to 17:45																					
Peak Hour For Entire Intersection Begins at 16:45																					
16:45	0	4	0	0	4	0	0	0	0	0	0	12	0	0	12	0	0	0	0	0	16
17:00	1	7	0	0	8	1	0	0	0	1	0	9	1	0	10	0	0	0	0	0	19
17:15	0	1	0	0	1	0	0	0	0	0	0	16	0	0	16	0	0	0	0	0	17
17:30	0	6	0	0	6	0	0	0	0	0	0	8	0	0	8	0	0	0	0	0	14
Total Volume	1	18	0	0	19	1	0	0	0	1	0	45	1	0	46	0	0	0	0	0	66
\% App Total	5.3\%	94.7\%	0.0\%	0.0\%		100.0\%	0.0\%	0.0\%	0.0\%		0.0\%	97.8\%	2.2\%	0.0\%		0.0\%	0.0\%	0.0\%	0.0\%		
PHF\|	. 250	. 643	. 000	. 000	. 594	. 250	. 000	. 000	. 000	250	. 000	. 703	. 250	. 000	. 719	. 000	. 000	. 000	. 000	. 000	. 868

ALL TRAFFIC DATA

(916) 771-8700

orders@atdtraffic.com File Name: 18-08462-002

Bank 1 Count = Bikes \& Peds

	Morgan Territory Rd Southbound					Project Dwy Westbound					Morgan Territory Rd Northbound					Project Dwy Eastbound						
START TIME	LEFT	THRU	RIGHT	PEDS	APP.TOTAL	LEFT	THRU	RIGHT	PEDS	APP.TOTAL	LEFT	THRU	RIGHT	PEDS	APP.TOTAL	LEFT	THRU	RIGHT	PEDS	APP.TOTAL	Total	Peds Total
7:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

16:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Grand Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Apprch \%	0.0\%	0.0\%	0.0\%			0.0\%	0.0\%	0.0\%			0.0\%	0.0\%	0.0\%			0.0\%	0.0\%	0.0\%				
Total \%	0.0\%	0.0\%	0.0\%		0.0\%	0.0\%	0.0\%	0.0\%		0.0\%	0.0\%	0.0\%	0.0\%		0.0\%	0.0\%	0.0\%	0.0\%		0.0\%	0.0\%	

$\begin{array}{\|c\|} \hline \text { AM PEAK } \\ \text { HOUR } \\ \hline \end{array}$	Morgan Territory Rd Southbound					Project Dwy Westbound					Morgan Territory Rd Northbound					Project Dwy Eastbound					
START TIME	LEFT	THRU	RIGHT	PEDS	APP.TOTAL	LEFT	THRU	RIGHT	PEDS	APP.TOTAL	LEFT	THRU	RIGHT	PEDS	APP.TOTAL	LEFT	THRU	RIGHT	PEDS	APP.total	Total
Peak Hour Analysis From 08:00 to 09:00																					
Peak Hour For Entire Intersection Begins at 08:00																					
8:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Volume	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
\% App Total	0.0\%	0.0\%	0.0\%			0.0\%	0.0\%	0.0\%			0.0\%	0.0\%	0.0\%			0.0\%	0.0\%	0.0\%			
PHF\|	. 000	. 000	. 000		. 000	000	. 000	. 000		. 000	. 000	. 000	. 000		. 000	. 000	. 000	. 000		000	. 000
$\begin{array}{\|c\|} \hline \text { PM PEAK } \\ \text { HOUR } \\ \hline \end{array}$	Morgan Territory Rd Southbound					Project Dwy Westbound					Morgan Territory Rd Northbound					Project Dwy Eastbound					
START TIME	LEFT	THRU	RIGHT	PEDS	APP.TOTAL	LEFT	THRU	RIGHT	PEDS	APP.TOTAL	LEFT	THRU	RIGHT	PEDS	APP.TOTAL	LEFT	THRU	RIGHT	PEDS	APP.TOTAL	Total
Peak Hour Analysis From 16:45 to 17:45																					
Peak Hour For Entire Intersection Begins at 16:45																					
16:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Volume	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
\% App Total	0.0\%	0.0\%	0.0\%			0.0\%	0.0\%	0.0\%			0.0\%	0.0\%	0.0\%			0.0\%	0.0\%	0.0\%			
PHF\|	. 000	. 000	. 000		. 000	. 000	. 000	. 000		. 000	. 000	. 000	. 000		. 000	. 000	. 000	. 000		. 000	. 000

Appendix C - Level of Service Worksheets for Existing and Cumulative Conditions

